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Modified Tangent Procedures* 
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(Received 19 April 1972) 

Two procedures for extending a basic set of known phases are described which, unlike the tangent 
formula, depend on the conditional probability distribution of cos (0n+Ok+O-n-k) as well as the 
distribution of sin (~0h+(0k+~0-h-U). One of these modified tangent procedures has been applied to 
one unsolved and three solved crystal structures, and it has been found, in all instances, to be superior to 
the simple tangent formula when the initial set of phases is small. In addition, the modified tangent 
procedure, but not the simple tangent formula, is capable of making an enantiomorph selection in space 
group P21 when the input set consists only of the origin-fixing phases and those determined by means 
of ~ .  

1. Introduction 

One of the most useful relationships which may be 
derived from the conditional probability distribution 
of the pair of phases ~0k and ~0-h-k, where h is a fixed 
vector having an unknown phase and k ranges over all 
vectors in reciprocal space such that the magnitudes of 
IEkl and IE-h-kl have fixed values, is the tangent for- 
mula (Karle & Hauptman, 1956). Not only is the tan- 
gent formula a widely used technique for the solution 
of equal atom problems in noncentrosymmetric space 
groups, but it is also useful for refining and extrapolat- 
ing approximate phases derived in any way, e.g. when 
phases are calculated from a known fragment of a 
crystal structure (Karle, 1968). 

The simple tangent formula depends on the condi- 
tional probability distribution of sin Y, where Y= 
q~n+CPk+~-h-k, but not on the distribution of cos Y. 
The purpose of the present paper is to discuss tangent 
procedures which make more effective use of the prob- 
ability distribution of the pair of phases ~0k and ~0-h-k 
by forcing two of its parameters, the average values of 

* Portions of this paper were presented at the meetings of 
the American Crystallographic Association at Columbia, 
South Carolina, February 1971, and Ames, Iowa, August 1971. 

sin Y and cos Y to agree as closely as possible with 
their theoretical expected values. 

2. Derivation of the modified tangent procedures 

Suppose that the space group is P 1 and that there are 
N identical atoms in the unit cell. Define Ak by 

2 
Ak= --~-iTf [EhEkEh + ul . (2.1) 

Assume that the reciprocal vector h is fixed and that k, 
the primitive random variable, ranges uniformly over 
that region of reciprocal space for which Ak has a fixed, 
specified value. Under these circumstances the condi- 
tional probability distribution of the pair of phases 
(ak, Cp-h-,,, given Ak, is known to be (Cochran, 1955; 
Hauptman, 1972a) 

1 
P(~o, ~dAk) -  ~ 4rc~]0(&) 

x exp {Ak cos (~0h + ~o + ~b~)} (2.2) 

where I0 is the modified Bessel function. From (2.2) it 
follows readily that (Hauptman, 1966, 1972a; Karle & 
Karle, 1966) 
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<sin ((oh + (ok + (o--h-k)lAk>k =0  , (2.3) 

Ii(Ak) (2.4) 
(COS ((Oh + (ok + (o-h-k)lAk)k-- /0(Ak) ' 

in which the averages are extended over all vectors k 
in reciprocal space for which Ak has a fixed, specified 
value. An immediate consequence of (2.3) is the simple 
tangent formula, 

(IEkEh_k[ sin ((ok "l- (oh -- k) >k 
t a n  (#Oh= (IEkEh-kl c o s  ( ( o k +  (oh-k-)~k ( 2 .5 )  

in which the averages are extended over the same, ar- 
bitrary set of vectors k in reciprocal space. Thus (2.5) 
depends only on (2.3) which in turn is a consequence 
of the property of (2.2) that it is an even function of 
(Oh + q~0 + qh, a relatively weak property of the distribu- 
tion function. No use is made of (2.4) and the ratio of 
Bessel functions does not appear in (2.5). If one at- 
tempts to make stronger use of the probability distri- 
bution (2.2) by employing (2.4) as well as (2.3), one is 
led to the modified tangent procedures. 

If the random variable Y is defined by 

Y= (on + (ok + (O-- h-- k (2.6) 

and appropriate weights (Hauptman, 1972a) 

sin y]-lp= [ ll(Ak) -1/z 
Aklo(Ak) ] (2.7) Wsk = [Variance 

L 
and 

Wck= [Variance cos Y]- I/2 
Ii(Ak) l~(Ak) - m  (2.8) 

= [1--  Aklo(Ak)-- I2(A-,,) -] 

are assigned, one may then attempt to determine the 
unknown phase (On by minimizing, in accordance with 
the principle of least squares, either 

Ii(Ak) 2 
~ =  <w~k sin 2 Y+ wfr, [cos Y -  I0(Ak)] >k (2.9) 

o r  

< I" Io-o(~)-.l/'(Au)]>2 k (2.10) • '= <We~k sin Y>zu + w~,, l cos Y-- 

in which the averages are taken over an arbitrary set of 
vectors k in reciprocal space and p = 1 or 2. These mod- 
ified tangent procedures are substitutes for the tangent 
formula and, since they make stronger use of the prob- 
ability distribution of the phases, they presumably con- 
stitute an improvement over the tangent formula. 
Neither (2.9) nor (2.10) may be solved explicitly for the 
unknown, (oh; consequently, it is necessary to evaluate 
the function at a number of points and to select the 
value of (oh corresponding to the minimum in the curve. 
The tangent formula itself gives a unique value for each 
phase, but introduction of (2.4) may result in the pre- 
sence of two minima in the function ~b. Equation (2.9) 
may be rewritten in the form 

~=½C2 cos 2(Oh--½S2 sin 2(oh-- 2C1 cos (oh 
+ 2S1 sin (Oh + C,  

where 
c2= ((wok- w,k) cos 2((ok + (o-h- k))k 

Sz= ((Wck-- W~k) sin 2((ok + (o--h-k))k 

q =  w¢kL(A0 cos @k+(o-h-k) 

Ii(Ak) h_k)>k $1=< Wck ~(A~,)sin ((ok +(O- 

and 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

~' II(A_~! WSk)k , (2.16) C-~-< Wck [ 1"~ \ io(Ak) )2] "~ 
and evaluated more easily than (2.10) on a digital com- 
puter. In the applications which have been made to 
date, equation (2.11), which will be referred to as the 
modified tangent formula, has been used and q~ has 
been evaluated at 100 equal intervals. The formulas 
used in this least-squares procedure [(2.11)-(2.16)] are 
similar to those used in the method of the least-squares 
analysis of structure invariants (Hauptman, Fisher, 
Hancock & Norton, 1969, equations (4.4)-(4.9); 
Hauptman, 1970; Hauptman, Fisher & Weeks, 1971), 
but here it is the sum of the squares of the differences 
between the cosine invariants X =  cos ((oh + (ok + (o-h-k) 
and their expected values (rather than their calculated 
values as was done in the earlier work) which, together 
with the contribution from the squares of sin ((oh+ 
(ok + (O- h- k), is minimized. 

The reliability of the determination of an individual 
phase, (oh, is indicated by the figure of merit or residual, 

Rh m 1/2 (2.17) ~ ~ m i n ,  

where ~bmt, is the minimum value of ~. Clearly, the 
smaller the value of Rh, the better. Next, if a set of 
phases (oh is determined simultaneously from the same 
basic set of known phases, then one defines first 

Ah = ~ Ak (2.18) 
k 

where the sum is taken over all the vectors k contribut- 
ing to the value of ~ in (2.9), or (2.11)-(2.16), recalling 
that, for fixed h, Ak is a function of k alone. With this 
definition for Ah, the (cycle) modified tangent figure of 
merit is defined by 

ZAhRh 
R =  _h . . . . .  (2.19) 

ZA. 
h 

which is the weighted average of the minima for all 
phases in the cycle. Clearly R is small when the phase 
determination is proceeding correctly. It is found in 
practice that, for structures of moderate complexity 
(20-30 independent nonhydrogen atoms) R values in 
the interval 0.80-0.95 usually indicate correct phasing, 
and R values in excess of 0.95 are evidence of incorrect 
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phasing. However, for structures of great complexity 
(60 or more independent nonhydrogen atoms), larger 
values for R are to be expected. 

3. Application of the modified tangent procedure 
to three known structures 

The efficacy of the modified tangent procedure (2.11), 
and especially its utility in comparison with the simple 
tangent formula, (2.5), were first tested on the data for 
three known steroid crystal structures, each of which 
has 20-30 nonhydrogen atoms in the asymmetric unit. 
These structures are epiandrosterone (Weeks, Cooper, 
Norton, Hauptman & Fisher, 1971), estradiol-urea 
complex (1:1) (Duax, 1972), and 6c~-fluorocortisol 
(Duax, to be published). The first of these structures 
crystallizes in space group P2~, and the other two crys- 
tallize in space group P2t2t2~. 

In the first test of the modified tangent formula, the 
input consisted of a large set of correct phases which 
were refined using both tangent procedures. Since it 
was desired, in these initial applications, to give approx- 
imately equal weights to the contributions of sin Y and 
cos Y to the function minimized by least-squares, and 
since the variance of cos Y is much less than that of 
sin Y (Fisher, Hancock & Hauptman, 1970), the 
weights were made proportional to the reciprocals of 
the corresponding standard deviations rather than the 
variances [i.e. p = 1 in (2.9)]. Table 1 gives a comparison 
of the results for four cycles of refinement of the true 
phases for reflections with IEI >-1.3, for each of the 
three structures by means of both the simple and modi- 
fied tangent formulas. Although large sets of accurate 
phases are not available at the point at which the tan- 
gent procedures are normally applied to an unknown 
structure, the results of this sort of experiment indicate 
the maximum accuracy which can be expected. It was 
found that, for all three structures, the average devia- 
tion of the predicted phases from their true values 
(~0tru¢- ~0pr~d~¢t~d) was approximately zero, and the aver- 
age absolute value of the deviation was in the range 
0.2-0.3 radians for both formulas. Thus, the formulas 
are about equally good under these circumstances, and 
the simple tangent formula would be preferred because 
it requires less computing time. 

Table 1. Comparison of simple (top figure) and 
modified tangent formulas following 4 cycles of 
refinement of the true phases of all vectors with 

IEI --- 1.3 using all triples with A >_ 1.0 

The deviations are (¢,u,-(ffpredleted). 
Num- Num- 
ber of ber of (Devia- (IDevia- 

Structure phases triples tion) tionl} 
Epiandrosterone 289 5030 0.01 rad 0.22 rad 

0.01 0.23 
Estradiol-urea 359 5981 -0.03 0.20 

complex - 0.03 0-21 
6~-Fluorocortisol 367 3338 0-02 0.29 

0.03 0.28 

Once it had been established that the modified tan- 
gent formula was at least as accurate as the simple tan- 
gent formula in an idealized case, attention was di- 
rected to the type of situation encountered in the solu- 
tion of an unknown structure, and the structures of the 
estradiol-urea complex and 6c~-fluorocortisol were re- 
solved with the modified tangent procedure using the 
same basic sets of phases which had previously been 
used to solve the structures by means of the simple 
tangent formula. In both cases, after selection of the 
origin and enantiomorph, additional phases were de- 
termined through the two-dimensional structure invar- 
iants X=cos(~0h+~0k+tp-h-k) before beginning the 
tangent formula application (Duax, Weeks & Haupt- 
man, 1972), and a total of 300 reflections were then 
phased in the tangent formula. Table 2 summarizes the 
results of these studies. As in the cases involving a large 
set of correct input phases, the average deviations of 
the phases from their correct values are near zero re- 
gardless of which formula is used, but the average ab- 
solute value of the deviation for the phases computed 
by the simple tangent formula was 1.5 times as great as 
the average absolute deviation for the modified tangent 
phases in the case of 6c~-fluorocortisol and twice as 
great in the case of the estradiol-urea complex. Al- 
though the phases derived by both tangent techniques 
resulted in intelligible maps for these structures, the 
more correct modified tangent phases produced cleaner 
maps as shown by the data in Table 3. Four more at- 
oms were discernible on the 6c~-fluorocortisol E map 
phased by the modified tangent formula than on the 
corresponding map phased by the simple tangent for- 
mula. Thus, although the modified tangent procedure 
was superior in both of these applications, the differ- 
ences were not decisive. A more clear-cut comparison 
is given in the sequel (§5). 

Table 2. Comparison of the simple (top figures) 
and modified tangent formulas for the phase build-ups 

used to solve the estradiol-urea complex and 
6ct-fluorocortisol 

The deviations for the final tangent cycles, in radians, are 
(~.ue- Cpre~lc,od). 

Estradiol-urea 6~-Fluoro- 
Structure complex (1 : 1) cortisol 

Number of input phases 62 51 
Number of incorrect 

input phases 4 5 
(Deviation} 0-08 0.06 

0.00 0.03 
(I Deviation I) 0.59 0.50 

0.28 0-33 

It is instructive to examine some typical examples of 
the modified tangent minimization function, ~,  and in 
Figs. 1 and 2, q~/2 has been plotted as a function of phase 
angle for two reflections from the estradiol-urea com- 
plex. These curves were obtained by dividing the total 
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Table 3. Comparison of Fourier maps for the 
estradiol-urea complex and 6c~-fluorocortisot which 

were computed using phases calculated by the simple 
(top figure) and modified tangent formulas 

Estradiol-urea 6~-Fluoro- 
Structure complex cortisol 

Number of nonhydrogen 
atoms in asymmetric unit 24 27 

Number of atoms found 22 22 
23 26 

Average distance from 0-23 0.12 
correct position (A) 0.15 0.10 

possible range of the phases into 100 equal intervals 
(i.e. intervals of 3.6 °) and evaluating ~ in each interval. 
The curves are plotted for each of the seven cycles per- 
formed in the modified tangent run used to resolve this 
structure. 

,~. 1/2 1.6 

1A 

1.0 

0.8 

I I I I I I I 1 I I I I I 
1.00 2.00 3.00 4.00 5.00 6.00 

ANGLE (RADIANS) 

Fig. I. ~1/2 [Equation, (2.11)] as a function of ~b for the well- 
determined phase ~b011 (estradiol-urea). 

1.6 ~J~ 1/2 

1.4- 

1.0 

0.8 

I I I I I I I I I I I I 
1.00 ~00 3.00 4~0  5.00 ~00 

ANGLE (RADIANS) 

Fig. 2. ~/2 [Equation, (2.11)] as a function of ~b for the poorly 
determined phase ~b022 (estradiol-urea). 

Reflection 011 has a well-determined phase. The 
curves for this reflection are sinusoidal, and they re- 
main approximately constant throughout all seven tan- 
gent cycles. Each curve has a single well-defined mini- 
mum occurring at one of the two phase values (n/2 
radians) allowed for this reflection by space group 
symmetry. The minima are low and give good figures 
of merit (i.e. Rh ~-- 0"85). 

In contrast, reflection 022 has a poorly determined 
phase. The curves are nearly fiat, and they give no 
clear indication for the value of this phase. Although 
it is difficult to see, there are actually two minima in 
each of the curves, these minima occur at widely sep- 
arated values of the phase, and they have the same poor 
high figures of merit (Rh in the range 1.06-1.09 for the 
various cycles). The true value of ~002z is 0. The simple 
tangent formula calculates 0 in cycles 1 and 3 and n 
in all other cycles. The modified tangent formula has 
minima at n/2 and - n / 2  in cycle 1, and the positions 
of the minima move closer to n in subsequent cycles. 
In cycle 7, the minima corresponded to phase values of 
- 2 . 0 3  and 2.08 radians. 

The reason for the disparate behavior of the two 
phases is clear from a post mortem examination of the 
average values of the cosine seminvariants, cos (~0h + 
~0k+~0-h-k) for the ~2 triples which were used in the 
tangent procedures and which involve these reflections. 
The average A value for the triples involving 011 was 
1.95, and the average cosine value was 0.57 in accept- 
able agreement with the theoretical expected value of 
0.69. On the other hand, the triples involving 022 (for 
which the average A was 1.33) had an average cosine 
value of 0.10, in disagreement with the theoretical ex- 
pected value of 0.55. This low average cosine value for 
022 reflects the fact that this phase is, in a sense, 'out 
of phase' with the majority of estradiol-urea reflections, 
and this explains why the phase was so poorly deter- 
mined. 

4.  E n a n t i o m o r p h  s e l e c t i o n  by  the  
m o d i f i e d  t a n g e n t  p r o c e d u r e  

One of the difficulties in the application of direct meth- 
ods to structures in a noncentrosymmetric space group 
like P21 where all restricted phases have the same two 
possible values lies in the selection of the enantio- 
morph. On the other hand, in space group P212a2~, 
enantiomorph selection is simplified because some 
phases are restricted to values of 0 or n and other 
phases are restricted to + n/2. In space groups of the 
P21 type, enantiomorph discrimination depends on the 
accurate identification of some cosine seminvariants, 
cos (~ph+~Pk+~0--h-k), whose values are far from +1 
or - 1 and will follow from the least-squares analysis 
of such seminvariants (Hauptman, Fisher, Hancock & 
Norton, 1969). Alternatively, this enantiomorph discri- 
mination may be accomplished by the modified tangent 
procedure. When the first enantiomorph sensitive phase 
is determined by this procedure, there will be two equal 
minima in the minimization function 4. The phase 
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corresponding to one minimum will be the phase for 
one enantiomorph whereas the other minumum will 
occur at the phase for the other enantiomorph. In con- 
trast, in cases where all starting phases have values equal 
to one of the two cardinal points (0 or re), no values 
other than these may be calculated for any phase using 
the simple tangent formula (2.5) except through the 
accumulation of round-off errors. 

The enantiomorph distinguishing ability of the mod- 
ified tangent procedure may be demonstrated by con- 
sidering what would have happened had the tangent 
techniques been applied to the starting set of six phases 
(three phases determined by the origin specifying pro- 
cedure and three additional phases determined by the 
~1 formula) for epiandrosterone. In the actual struc- 
ture solution (Hauptman, Fisher & Weeks, 1971), 
least-squares analysis of the cosine seminvariants was 
used to derive a larger set of phases, including phases 
sensitive to the enantiomorph, before application of 
the simple tangent formula. Table 4 shows the progress 
of the enantiomorph selection by the modified tangent 
procedure. During the first three cycles, five three- 
dimensional phases (513, 112, 512, 310, and 624) were 
determined, but all were calculated to have cardinal 
point values by both the simple and modified tangent 
formulas. In the fourth cycle, six additional phases (4IT 
through 623) were determined, and one of these, ¢04a, 
was calculated by the modified tangent formula to have 
two minima, and these minima did not correspond to 
cardinal point values for the phase. It may be seen 
from the second column in Table 4 that, of all the three- 
dimensional reflections for which phase values had 
been determined up to this point, reflection 41T was the 
most sensitive to the enantiomorph. The absolute value 

of the deviation of the true phase of 41]" from the 
nearest cardinal point was 1.48 radians. The maximum 
value of this deviation is 1.57 radians, and the closer 
the value of the deviation to 1.57, the greater the differ- 
ence between the values of the phase in question for the 
two enantiomorphs. For example, the difference be- 
tween the values of q)41i for the two enantiomorphs is 
2.96 radians, but this difference is only 0.12 radians in 
case of the enantiomorph insensitive reflection 513. 

All phases were calculated, by the simple tangent 
formula, to have cardinal point values in the fourth 
cycle, and all phases except ~41i were calculated to be 
equal to the cardinal point nearest to the true phase. 
The same results were obtained for the simple tangent 
formula in the fifth cycle. However, the phases of re- 
flections which depended on (ff41i were not calculated 
to have cardinal point values by the modified tangent 
formula. Only one (513), of the seven phases which were 
calculated off cardinal points by the modified tangent 
formula in cycle 5 was less accurate than the phase cal- 
culated by the simple tangent formula. 

5. 9-t-Butyl-9,10-dihydroanthracene 

The modified tangent procedure has been shown to 
result in more accurate phasing than the simple tangent 
formula when applied to the data for three solved 
steroid crystal structures. However, the simple tangent 
formula had been adequate to solve these structures 
and, based on these results alone, it was questionable 
whether the modified tangent procedure would allow 
for a structure solution in a case where the tangent for- 
mula itself was unsuccessful. The analysis of 9-t-butyl- 
9,10-dihydroanthracene (ClsH20), a hydrocarbon crys- 

Table 4. Enantiomorph selection for epiandrosterone (space group P21) by the modified tangent procedure 

IDev.I true IDev.I predicted phase 
Cardinal phase from from cardinal pt. 

Predicted phase True pt nearest nearest  nearest true phase 
Vector Single Modified phase  true value cardinal pt. Simple Modified A= B= A-B 

Simple Modified 
4 1 T*:I: 0. 1.35 1"66 3.14 1.48 3-14 1.79 1.66 0.31 1-35 
5 1 ~t 0. -0.18 -0.06 0. 0-06 0. 0.18 0.06 0.12 -0.06 
1 1 ~t 3.14 -2.98 -2.16 3.14 0.98 0. 0-16 0.98 0.82 0.16 
5 1 2 3.14 3"14 2.98 3.14 0.17 0. 0. 0-17 0.17 0. 
3 1 0 0. 0- -0.25 0. 0.25 0- 0. 0.25 0.25 0. 
6 2 ~ 0. 0. 0.05 0. 0-05 0. 0. 0.05 0.05 0- 
4 1 T* 0. 1.06 1.66 3.14 1.48 3.14 2-08 1.66 0.60 1.06 

2 2 ~ 3.14 3.14 -2.08 3.14 1.06 0. 0. 1-06 1.06 0. 
2 2 ~ 0. 0. 0.11 0. 0.11 0. 0. 0-11 0-11 0. 
3 1 T 3"14 3.14 2"27 3"14 0"87 O" O" 0"87 0"87 O. 
3 1 1? 3"14 -2"94 -2.10 3"14 1"04 O" 0"20 1.04 0"84 0"20 
6 2 5 3q4 3"14 -2"52 3"14 0.62 O" O. 0"62 0.62 O. 
1 1 0 3"14 3"14 1"85 3"14 1"29 O. O- 1"29 1"29 O. 
1 2 I t  O" 0.21 0.80 O. 0.80 O" 0.21 0.80 0.59 0-21 
2 2 1  3"14 3"14 2"19 3"14 0"95 O" O" 0.95 0"95 0- 
3 2 Ot 3"14 -2"47 -2.05 3.14 1.09 O" 0"67 1"09 0.42 0.67 
4 1 2t 3-14 3.00 2.73 3"14 0"41 O" 0.14 0.41 0-27 0.14 
4 2 2 3"14 3"14 1.73 3"14 1.41 O" O. 1"41 1-41 O" 
7 1 5 3"14 3"14 -3.04 3"14 0"10 O" O. 0.10 0.10 O. 

IDev.I predicted 
phase from 
true phase 

* Enantiomorph selecting phase. 
t Phase assignment dependent on tp41a-. 
~ Calculations for cycle 4. All other rows pertain to cycle 5 of the tangent procedures as described in the text. 
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tallizing in space group P212121 (Brennan, Putkey & 
Sundaral ingam, 1971), provided an example where this 
situation occurred. 

A base set of  29 two-dimensional phases was ob- 
tained for 9-t-butyl-9,10-dihydroanthracene through 
the use of  a variety of  techniques, and these starting 
phases are recorded in Table 5. Phases of re/2 were as- 
signed to reflections 091, 190, 0,3,14, and 105 in order 
to specify the origin and enant iomorph,  and the ~1 and 
squared-tangent formulas (Hauptman,  1970, 1972b) 
indicated the phases of  0,10,0, 006 and 200 to be re. It 
should be noted that, while specifying arbitrari ly the 
values of  ~0091, ~0~90, ~0o,3,14, (0,05 does serve to fix the 
origin and enant iomorph so that all phases are uniquely 
determined, it is necessary to assign a phase to a re- 
flection hklwhere k is not divisible by three in order to 
make all phases accessible f rom Y2 type relationships 
alone. In this case, assigning 90,10,0 the value deter- 
mined by ~ served this purpose. 

The Yz triples with A values greater than 1.3 which 
involved only two-dimensional  reflections with [El 
greater than 1.2 were generated, and the cosine semin- 
variants,  cos (qh+~k+~0-r , -~) ,  for these triples were 
computed by both the modified triple product and 
M D K S  formulas (Hauptman,  Fisher, Hancock & 
Norton,  1969; Hauptman ,  1970, 1972b). The triples 

were then divided into four groups having approx- 
imately constant  A values and, within each group, they 
were first ranked according to the modified triple pro- 
duct computed cosines and then according to the 
M D K S  cosines. Acceptance criteria, as shown in 
Table 6, were then assigned to each of  the A ranges, 
and a triple was assumed to have a cosine of  unity and 
was used to determine a new phase only if  its cosine, 
as computed by both formulas,  ranked among the top 
T% for triples in that range. Similarly, triples were as- 
sumed to have cosine values of  - 1 ,  and were used to 
determine new phases, if  their computed cosines ranked 
among the bot tom B% for the A range in question. 

Table 6. Acceptance criteria for the 
two-dimensional triples 

Number of 
triples 

A Range Average A in range T% B% 
1"3- 1.5 1.40 69 50 % 5 % 
1.5- 2.0 1.73 69 60 2 
2.0- 3.0 2.38 60 80 2 
3.0-10.5 5.00 46 90 0 

At A values of 2.0, 12 % of  the cosine seminvariants  
for triples of  two-dimensional  reflections have values 

Table 5. Initial two-dimensional phases for 9-t-butyl-9, lO-dihydroanthracene 

Serial Reflection I EI 
1 0 9 1 4-02 
2 1 9 0 3.25 
3 0 3 14 2.90 
4 1 0 5 3.09 
5 0 10 0 4.71 

6 0 0 6 4.08 

Phase 
(radians) 

n/2 } 
rq2 
zq2 
n/2 
7~ 

7 2 0 0 1"68 
8 0 9 5 2"80 
9 0 7 14 2"66 

10 1 0 1 1.75 
11 0 10 6 1"63 
12 0 9 7 1"42 
13 1 0 11 1"66 
14 0 2 13 1.85 
15 0 2 15 1.80 
16 1 0 3 2.05 
17 2 0 2 2"11 
18 2 0 8 2"89 
19 3 0 3 1.33 
20 : 0 3 8 1"41 
21 0 1 1 1"21 
22 0 8 0 1"30 

7~ 

- n/2 
- -  n/2 

n/2 
0 

-hi2 . 

- re~2 
0 
0 

n/2 

~/2 
-rq2 } 

0 

23 0 5 5 2"77 
24 0 2 3 2.80 
25 0 5 11 2.90 
26 0 8 3 1"41 
27 0 11 4 1"91 
28 0 4 10 1.80 
29 0 5 17 2"35 

- hi2 
7~ 

n/2 
7~ 

- n/2 
0 

- -  n[2 

* Grant, Howells & Rogers (1957), Hauptman (1971, 1972b). 
t Hauptman (1972b), Hauptman & Duax (1972). 

Reason 

Define origin 
and enantiomorph 

~1 P+ =0-00; 
squared-tangent cos ~olo[K= - 16"[" 

Ya P+ =0.01 ; 
squared-tangent cos ~oID/K= --35"t" 

Squared-tangent cos ~olo/K= - 43]" 

Cycle 1 

Cycle 2 
(105; 103) pair* 

Cycle 3 

Cycle 4 

Y.2 triple with 091 and 
011 confirms squared-tangent 

cos ~oID/K= 12]" 
Cycle 5, cos (~po,~,a-~+ ~po~8 +~poss)= - I 

Cycle 6 

Cycle 7 
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of - 1. Using only those triples with A values of two or 
greater whose cosines were among the top 80 % when 
computed by both formulas, six additional reflections 
(reflections with serial numbers 8 to 13 in Table 5) 
could be related to the origin and ~t  reflections, and a 
second cycle of this procedure yielded two more phases. 
Reflection 103 was then introduced into the known set 
because it was strongly paired to 105 (Grant, Howells 
& Rogers, 1957; Hauptman, 1971, 1972b) and the in- 
clusion of this phase allowed four additional phases 
to be determined from only those triples having A > 2. 
Reflection 011 was included despite its relatively low 
normalized structure factor amplitude (IE0ul = 1.21) 
because it could be obtained from a triple with an A 
value of 5-2 for which the cosine values calculated by 
the triple product and MDKS formulas were 1.35 and 
1.43 respectively. 

It was considered to be important to obtain ~00,5,5 be- 
cause knowledge of this phase would make several ad- 
ditional phases accessible, but it was necessary to use 
triples with lower A values in order to reach this phase. 
The triple product value for cos (~Otl0t6 .qt_ ~OOt]t 8 .q_ (~0tTt14) 
was 1.99, and this triple was used to find ~038 even 
though the A value was only 1.4. Reflection 038 pro- 
vided a bridge which led to 055 by means of cos (~P0r~ri~ 
+~00~s+~055) for which the computed values were 
-0 .27  (triple product) and - 0 . 6 4  (MDKS). This was 
the only triple from the bottom B% in any A range 
which was actually used to find a new phase. Two more 
cycles were then based on these two-dimensional 
triples, and six more phases were obtained. 

The 29 phases found by means of this analysis of the 
two-dimensional triples, which were all later shown to 
be correct, were used as input to both the simple tan- 
gent and modified tangent formulas, and 221 more 
phases were found during the course of ten tangent 
cycles. The total number of phases known at the end of 
each cycle and the modified tangent cycle figures of 
merit, R cycle (2.19) are given in Table 7. Although the 
figures of merit for the final two or three cycles seemed 
to be a little high, the modified tangent phases yielded 
an excellent E map nevertheless. The highest 18 peaks 
on this E map had a r.m.s, deviation of 0.10 A from the 
refined positions for the 18 carbon atoms, and the ini- 
tial R value was 22 %. In contrast, the simple tangent 
phases produced an E map in which 13 of the top 50 
peaks were within 0.50 A of the carbon atom positions, 
and formed a recognizable fragment (after the true sol- 
ution was known) of the enantiomorph of the original 
molecule referred to a different origin! Table 8 shows 
the average absolute deviations of the 250 modified and 
simple tangent calculated phases from their true values 
for all 16 possible positions of the two enantiomorphs 
of the molecule. The average absolute deviations of the 
phases corresponding to the position of the molecule 
consistent with the original origin and enantiomorph 
selection was 0.27 radians for the modified tangent 
formula and 0.98 radians for the simple tangent for- 
mula. The average absolute deviation of the simple 

tangent phases from the true values for the position at 
which the enantiomorph fragment appeared was 1.04 
radians. If the phases issuing from the tangent program 
were randomly distributed, these deviations would be 
1.57 radians, and it can be seen that the deviations are 
close to this value for most of the positions of the mol- 
ecule. It is clear that such a movement of the molecule 
as was seen on the tangent map is not a phenomenon 
reproducible in other sets of data, and must be attrib- 
uted to the fact that the various positions of the mol- 
ecules have some phases in common. In this case, the 
tangent formula retained a majority of the phases 
common to the two positions and altered many of the 
other phases from the values consistent with the ori- 
ginal origin and enantiomorph selections, but it is 
doubtful that a recognizable molecule would have re- 
suited had the structure been very complex. 

Table 7. Modified tangent cycle figures of  merit, 
R cycle (equation 2.19) 

Number of Number of 
phases triples 

Cycle determined used R cycle 
8 35 106 0.79 
9 45 178 0.81 

10 60 324 0.81 
11 80 634 0-82 
12 105 1008 0-85 
13 135 1649 0.88 
14 170 2542 0-90 
15 210 3818 0.92 
16 250 5745 0.93 
17 250 5745 0.93 

After the structure was solved, several other phase 
buildups differing in E minima and rate of new phase 
pick-up were investigated, and in one of these cases 
both tangent procedures worked, but no case has yet 
been found where the simple tangent formula yielded 
the solution and the modified tangent procedure did 
not. Consequently, it cannot be claimed that it would 
not have been possible to solve the 9-t-butyl-9,10-di- 
hydroanthracene structure by means of the simple tan- 
gent formula alone had other build-ups been used. 
However, it has been shown that the initial phases 
which were assigned in the build-up reported here were 
all logically and correctly assigned, and in this case 
time was saved by the immediate application of the 
modified tangent procedure. The computing time re- 
quired to generate sets of phases by both the simple and 
modified tangent procedures simultaneously is approx- 
imately 1.75-2-0 times as great as the time required by 
the simple tangent formula alone.* This time require- 

* Times for the modified tangent formula alone are not 
available, but it is expected that they will be only slightly less 
than the times required for simultaneous application of the 
two formulas. 
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Table 8. Average absolute deviations of  the 250 modified and simple tangent phases 
calculated in the 17th cycle from their true values 

1st enantiomorph 2nd enantiomorph 

Origin Modified Simple Modified Simple 
position tangent tangent tangent tangent 
0 0 0 0.27 rad 0.98 rad 1.55 rad 1.56 rad 
½ 0 0 1.54 1.56 1.49 1.56 
0 ½ 0 1.57 1.58 1.29 1.52 
0 0 ½ 1.50 1.56 1.19 1.28 
½ ½ 0 1.51 1.51 1.23 1.04" 
½ 0 ½ 1.52 1.46 1.52 1.55 
0 ½ ½ 1-54 1.58 1.54 1.52 
½ ½ ½ 1.44 1.36 1.54 1.52 

* A fragment of the molecule was found at this position as described in the text. 

ment must be weighed against the possible costs of in- 
vestigating a greater number of initial phase combina- 
tions if only the simple tangent formula is used, and it 
is difficult to guess, based on the limited data available, 
how many additional combinations will be necessary. 
Thus, definite statements concerning the relative merits 
of the tangent procedures must await the results of 
more extensive applications of the modified tangent 
procedure, both in this laboratory and elsewhere. 

6. Concluding remark 

A number of attempts to expand a large set of known 
phases for very complex molecules, mostly protein 
structures, by means of the simple tangent formula have 
been made with indifferent success (Coulter & Dewar, 
1971). In view of the comparisons between the two 
techniques made in this paper, it is suggested that sim- 
ilar attempts employing the modified tangent procedure 
instead of the older tangent formula may prove to be 
more successful. 

The authors are grateful to Professor M. Sundara- 
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